Viable Paths Towards Graphene Circuits: Implementation Styles and Logic Synthesis Tools

Sandeep Miryala, Valerio Tenace, Andrea Calimera, Enrico Macii, Massimo Poncino

POLITECNICO DI TORINO

DAUIN - Dipartimento di Automatica e Informatica

Graphene: A Viable Candidate for Future ICs

Single atom layer of Graphite with C atoms packed in a hexagonal lattice

Some other (electrical) properties

- Highest current density
- Longest mean free path
- Highest intrinsic mobility
- High thermal conductivity

"It's the <u>thinnest</u> possible material you can imagine. It also has the largest surfaceto-weight ratio: with one gram of graphene you can cover several football pitches... it's also the <u>strongest</u> material ever measured; it's the <u>stiffest</u> material we know; it's the most <u>stretchable</u> crystal. That's not the full list of superlatives, but it's pretty impressive."

> Prof. Andre Geim Nobel Prize 2010

Graphene is a Wonder Material

- But also Superheroes have limits
 - Zero Band-Gap: low I_{on}/I_{off} ratio
 - Not suitable for digital applications
 - In the traditional sense!

Standard (i.e., CMOS-like) digital circuits need a band-gap

- Trying to "artificially" create the band-gap (e.g., Nano-Ribbons or 2D Composities (TMDC):
 - May drastically affect the intrinsic properties of Graphene
 - May dramatically impact cost and stability

A Different View

We propose a simple concept

 Exploit the intrinsic properties of graphene rather than trying to modify them

Face the problem from a different angle

- Identify circuit implementation styles suitable to the properties of graphene, instead of playing with standard CMOS-like styles (which have been built and optimized for silicon)
- Provide CAD tools to quantify the figures of merit of graphene circuits

P-N Junction on Pristine Graphene

- Electrostatic doping through split metal back-gates
 - $-V \rightarrow p$ -type
 - $+V \rightarrow n$ -type
- Transmission Probability $T(\theta) = \begin{cases} 1 & when \quad pp/nn \\ \cos^{2}(\theta)e^{-\pi k D \sin^{2}(\theta)} & when \quad pn/np \end{cases}$

Reconfigurable (RG)-MUX: Structure

- First proposed by IBM
- Two back faced PN-junctions
 - 3 split back-gates which implement the electrostatic doping
 - Isolated from graphene by a thin layer of oxide
 - 3 front metal-to-graphene contacts which serve as input (A,B) and output (Z) pins

Graphene: The Ultimate Switch IEEE Spectrum, Jan. 2012

RG-MUX: Transmission Probability

- Back-gates control the doping profile of graphene
 - In V → p-type graphene
 - +V → n-type graphene
- Different doping profiles of adjacent graphene regions define the carriers transmission probabilities from inputs (A, B) to the output (Z)

Transmission probability across the junctions

$$T_{AZ} = \begin{cases} 1 & V_S = V_{\overline{U}} \to pp/nn\\ \cos^2(\theta)e^{-\pi k_F D \sin^2(\theta)} & V_S \neq V_{\overline{U}} \to pn/np \end{cases}$$

$$\begin{vmatrix} T_{BZ} = \begin{cases} 1 & V_S = V_U \rightarrow pp/nn\\ \cos^2(\theta)e^{-\pi k_F D \sin^2(\theta)} & V_S \neq V_U \rightarrow pn/np \end{vmatrix}$$

RG-MUX: Electrical/Logic Behavior

- U and U' driven by complementary voltages
 - U = '1' (Vdd/2)
 - U'= '0' (-Vdd/2)
- if S=U' then Z←A
 - p-p-n configuration
 - T_{AZ}=1; T_{BZ} ≈ 0.00003
 - $R_{AZ} = R_0 / 1 \approx 300\Omega$
 - $R_{BZ} = R_0 / T_{BZ} \approx 10^7 \Omega$
- if S=U then Z←B
 - p-n-n configuration
 - T_{AZ} ≈ 0.00003; T_{BZ} = 1
 - $R_{AZ} = R_0 / T_{AZ} \approx 10^7 \Omega$
 - $R_{BZ} = R_0 / 1 \approx 300 \Omega$

Possible Implementations and Logic Styles

- Inspired by CMOS technologies, make use of MUXs/EXORs as logic primitives
 - A. Standard Cell Style (STC)
 - Logic primitive: RG-MUX
 - Synthesis tool: Multi-level Logic Synthesis
 - B. Tree of MUX (TMUX)
 - Logic primitive: RG-MUX
 - Synthesis tool: BDD
 - C. FPGA/MUX
 - Logic primitive: MUX-based LUT
 - Synthesis tool: LUT decomposition

A) Standard Cell Design Style (STC)

Adapting standard logic synthesis flow

- 1. Start from a generic Boolean Network
- 2. Optimize it in terms of some cost-function (Area, Delay, Power)
- 3. Map to a real technology using cell libraries

A) RG-MUX Logic-Gates

 By properly configuring one, or more, RG-MUXs it is possible to implement all basic logic functions

	CMOS	Graphene
Device Area	1	0.94
Switching Delay	1	0.18
Power	1	0.23

logic	BUF	INV	AND	NAND	OR	NOR	XOR	XNOR
Arch	(F = X)	(F = X)	(F = XY)	$(F = \overline{XY})$	(F = X+Y)	$(F = \overline{X+Y})$	(F = X⊕Y)	(F = X⊕Y)
1	$\begin{array}{ccc} & & & & \\ & & \downarrow & \downarrow \\ X \rightarrow & 0 & 1 \\ & & \downarrow \\ & & F \end{array}$	$\begin{array}{c} \stackrel{\mathbf{'1'} \mathbf{'0'}}{\downarrow} \\ X \xrightarrow{0 1} \\ F \end{array}$	$\begin{array}{ccc} & \mathbf{\hat{0}}' & \mathbf{\hat{Y}} \\ \downarrow & \downarrow \\ \mathbf{X} \rightarrow & \mathbf{\hat{0}} & \mathbf{\hat{1}} \\ & \downarrow \\ \mathbf{F} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} Y & '1' \\ \downarrow & \downarrow \\ X \rightarrow \underbrace{0 & 1}_{F} \\ F \end{array}$	$X \xrightarrow{\downarrow 1'} (1' 0') \xrightarrow{I'} (1' 0') $	$X \rightarrow 0 1$ $Y \rightarrow F$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ Y \rightarrow 0 & 1 \\ \end{array} \\ Y \rightarrow 0 & 1 \\ \end{array} \\ Y \rightarrow 0 & 1 \\ \end{array} \\ Y \rightarrow F \end{array}$
2			$\begin{array}{c} X & Y \\ \downarrow & \downarrow \\ X \rightarrow \underbrace{0 & 1}_{\downarrow} \\ F \end{array}$	$\begin{array}{c} X & Y \\ \downarrow & \downarrow & \downarrow \\ X & - \underbrace{0 & 1}_{\downarrow} & \underbrace{1' & 0'}_{\downarrow} \\ \downarrow & \downarrow & 0 \\ \downarrow & \downarrow & 0 \\ F \end{array}$	$\begin{array}{c} X Y \\ \downarrow \downarrow \\ Y \rightarrow 0 1 \\ \downarrow \\ F \end{array}$	$\begin{array}{c} X & Y \\ Y \rightarrow 0 & 1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$		$X \rightarrow 0 1$ $X \rightarrow 0 1$ $Y \rightarrow 0 1$ $Y \rightarrow 0 1$ F
3			$\begin{array}{cccc} & \mathbf{\hat{1}}' & \mathbf{\hat{0}}' \\ \downarrow & \downarrow \\ \mathbf{X} \rightarrow \mathbf{\hat{0}} & \mathbf{\hat{1}} \\ & & \downarrow & \downarrow \\ \mathbf{X} \rightarrow \mathbf{\hat{0}} & \mathbf{\hat{1}} \\ & & \downarrow & \downarrow \\ \mathbf{\hat{0}} & \mathbf{\hat{1}} \\ & & \downarrow & \downarrow \\ \mathbf{\hat{0}} & \mathbf{\hat{1}} \\ & & & \downarrow \\ \mathbf{\hat{F}} \end{array}$,	$\begin{array}{cccc} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1' & 0' \\ \downarrow & \downarrow \\ X \rightarrow 0 & 1 \end{array} \\ & & & 1' & 1' \\ & & & 1' & 1' \\ & & & 1' & 1'$			Legend Select = Pin A 0 = Pin B 1 = Pin C Output = Pin F

B) Tree of MUX (TMUX)

Input netlist is transformed to Binary Decision Diagrams (BDDs).

- Each node in BDD is a Multiplexer.
- In CMOS technology, MUX gates are typically implemented with an ad-hoc structure based on transmission gates (PTL)
- With graphene, RG-MUXes naturally implement multiplexers

B) Tree of MUX (TMUX)

POLITECNICO DI TORINO 13

C) FPGA/MUX

- LUT-based FPGAs
 - LUTs implemented as trees of multiplexers
- CMOS implementation: PTL
- Graphene implementation: RG-MUX

Preliminary Simulation Results

STC or PTL?

- Graphene PN-junction looks a lot alike a pass gate
 - Go for PTL
- But, higher static power than STC
 - Go for STC
- Good things always stand in between...
 - Pass-XNOR Logic (PXL)
 - Logic primitive: Pass-XNOR gate
 - Synthesis tool: Pass-Diagram + Gemini

Graphene PN-Junction as Logic Switch

- Voltages at the back-gates turn-ON/OFF the device
 - U==S \rightarrow R_{ON} \rightarrow 1-logic
 - U!=S \rightarrow R_{OFF} \rightarrow O-logic

 $V_{S} = V_{U}$

S

Electrical Model

A graphene PN-junction behaves as a voltage-controlled resistor whose resistance is inversely proportional to the junction transmission probability.

- R_c resistors represent the parasitic resistance of metal-to-graphene contacts;
- R_{AZ} models the resistive path across graphene between the input A and the output Z, function of V_s and V_u;
- C_c represents the coupling capacitance between the two metal split gates, and two lumped capacitances connected to the back-gates S and U, i.e., C_{gS} and C_{gU}, which consist of the series of the oxide capacitance and the quantum capacitance of the graphene sheet.

Verilog-A Model

```
Algorithm 1 Verilog-A code for the reconfigurable logic gate
1: 'include ''disciplines.vams"
2: 'include ''constants.vams"
3: module dev(A,B,C,F);
4: input A, B, C;
5: output F;
6: real Tox, d, Ef, pi, q, h, Vf, Y, E, EOT, Kf, Cox,
   C_q, T, R_{nn}, R_{pn}, R_c;
7: real C_{c-in}, C_{c-out}, C_q, C_{in}, A;
8: analog
9: begin
       Y = (4 * pi * q^2) / (h^2 * V f^2);
10:
11:
        E_f = (sqrt(pow(E, 2) +
           +(2 * Y * E * q * abs(V(a)) * EOT)) - E)/(Y * EOT);
12:
13:
        Kf = (2 * pi * abs(E_f))/(h * Vf);
        R_{nn} = (pi * h)/(4 * q^2 * w * Kf);
14:
        R_{pn} = R_{nn}/T;
15:
        C_{ox} = E/Tox;
16:
        C_a = Y * Ef;
17:
        A = w^2 + 2 * w * d;
18:
        C_a = A * (C_{ox} * C_a) / (C_{ox} + C_a);
19:
        C_{in} = C_q + C_{c-in};
20:
21:
        I(A) < + C_{in} * ddt(V(A));
        if (V(A) > 0)
22:
23:
          V(Y1) < + V(C);
24:
          V(Y2) < + V(B);
25:
        else
26:
         V(Y1) < + V(B);
27:
         V(Y2) < + V(C);
28:
        end if
        V(Y3, Y1) < + I(Y3, Y1) * (R_{nn} + R_c);
29:
        V(Y3, Y2) < + I(Y3, Y2) * (R_{pn} + R_c);
30:
31:
        V(Y3,F) < + R_c * I(Y3,f);
        I(F) < + C_{c-out} * ddt(V(F));
32:
33: end
34: endmodule
```


Parameters: W = 194.5nm $T_{oxide} = 1.7nm$ $Area = 0.191\mu m^2$ $D = 18nm\theta = 45^{\circ}$ 1e+08 1e+07 1e+06 1e+04 1e+04 1e+04 1e+02 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Resistance (Ohms)

CMOS-like Static Implementation Style (CXL)

Using P-N junctions as transistors: not feasible

- High static power consumption due to leakage
- Front-to-back connections

Exploit the concept of Dynamic Power Supply

Pass-XNOR Gate

Similar to MOS Transmission Gates

- Input logic signals drive the back-gates (electrostatic doping)
- Front contacts propagate the «evaluation» signal
 - A function is evaluated as True if the input ramp passes through the gate and reach the output

 $\frac{R_0}{T_{AZ}(V_S, V_{II}, \mathcal{G}=45^\circ)}$ R_{Az}

Α	U	S	R _{AZ}	Z	
Pulse	0	0	R _{ON}	A	-
V _{dd}	0	1	R _{OFF}	Hi-Z	-
\mathcal{T}	1	0	R _{OFF}	Hi-Z	-
0V	1	1	R _{ON}	A	-

	CMOS XNOR	Graphene Pass-XNOR	Savings
[Width] μm	1.454	0.095	93.47 %
[Area] μm^2	2.116	0.191	90.97 %
[Delay] ns	0.37	0.08	78.37 %
[Static Power] μW	6.57	4	39.11 %
[Dynamic Power] μW	195.66	183.05	6.44 %
[Energy Delay Product] $fJ \cdot ns$	72.39	14.65	79.77 %

An energy-efficient new primitive with High Expressive-Power

Building Complex Functions with Pass-XNOR Gates

- Pass-XNOR Logic (PXL)
 - Implement product/sum of Exclusive-NORs
 - Product→Series
 - Sum \rightarrow Parallel

More area efficiency w.r.t. CMOS-like implementation styles

PXL vs. CXL

Experiments on a set of 46 logic functions (averaged results)

		#devices		Area [µm^2]	De	elav [ns]	P Leak [µA]	Dyn.	Power [µW]
	PXL	2.74		0.52	\langle	8.9	10.96		219.57
	CXL	5.48		1.05		50.44	102.7		444.89
F00 F01		Function \bar{a} $a \odot b$	F23 F24	Function $a + (b \odot d) \cdot c$ $(a \odot d) + (b \odot d) \cdot c$					
F02 F03 F04	($\frac{a+b}{a \cdot b}$ $a \odot b) + c$	F25 F26 F27	$\begin{array}{c} a + (b \odot d) \cdot (c \odot d) \\ \hline (a \odot d) + ((b \odot d) \cdot (c \odot d) \\ \hline (a \odot d) \cdot b \cdot c \end{array}$)	Higher	· leakage curr	ents	
F05 F06 F07		$\begin{array}{c} (a \odot b) \cdot c \\ \odot b) + (a \odot c) \\ \odot b) \cdot (a \odot c) \end{array}$	F28 F29 F30	$\begin{array}{c} (a \odot d) \cdot (b \odot d) \cdot c \\ \hline (a \odot d) \cdot (b \odot d) \cdot (c \odot d) \\ \hline (a \odot d) + (b \odot e) + c \end{array}$		Higher	⁻ delays		
F08 F09 F10		$\begin{array}{l} (b) b + (c \odot d) \\ (b) b \cdot (c \odot d) \\ (a + b + c) \end{array}$	F31 F32 F33	$\begin{array}{c} (a \odot d) + (b \odot d) + (c \odot e) \\ \hline ((a \odot d) + (b \odot e)) \cdot c \\ \hline ((a \odot d) + b) \cdot (c \odot e) \end{array}$)	Higher	dynamic pov	wer	
F11 F12 F13		$\begin{array}{c} (a+b) \cdot c \\ a+(b \cdot c) \\ a+b \cdot c \end{array}$	F34 F35 F36	$((a \odot d) + (b \odot d)) \cdot (c \odot e)$ $((a \odot d) + (b \odot e)) \cdot (c \odot d)$ $(a \odot d) + (b \odot e) \cdot (c \odot d)$)				
F14 F15	$(a \odot a)$	$\begin{array}{c} (a+b+c) \\ (b) (d) + b + c \\ (b) (d) + c \\ (b) (d) + c \\ (c) (d) (d) + c \\ (c) (d) (d) (d) \\ (c) (d) (d) \\ (c) (d) (d) \\ (c) (d) $	F37 F38	$\begin{array}{c} (a \odot a) + ((b \odot c) \cdot c) \\ \hline a + ((b \odot d) \cdot (c \odot e)) \\ \hline (a \odot d) + ((b \odot e) \cdot (c \odot e) \\ \hline \end{array}$	$\overline{)}$	Lac	ck of comme	rcial	
F16 F17 F18	$(a \odot d) + ((a \odot d)) + ((a \odot $	$\begin{array}{c} (b \odot d) + (c \odot d) \\ \hline \odot d) + b) \cdot c \\ d) + (b \odot d)) \cdot c \end{array}$	F39 F40 F41	$\begin{array}{c} (a \odot a) + ((b \odot e) \cdot (c \odot d) \\ \hline (a \odot d) \cdot (b \odot e) \cdot c \\ \hline (a \odot d) \cdot (b \odot d) \cdot (c \odot e) \end{array}$)	log	<u>gic-synthesis</u>		
F19 F20 F21	$((a \odot d) \rightarrow ((a \odot d) \rightarrow (a \odot d)))$		F42 F43 F44	$ \begin{array}{c} (a \odot \overline{d}) + (b \odot e) + (c \odot f) \\ \hline ((a \odot d) + (b \odot e)) \cdot (c \odot f) \\ \hline (a \odot d) + ((b \odot e) \cdot (c \odot f)) \end{array} $))	too	ols for the PX	<u>(L!</u>	
F22	(a ($((b \cdot c)) + (b \cdot c)$	F45	$(a \odot d) \cdot (b \odot e) \cdot (c \odot f)$					

Gemini: A PXL Synthesis Tool

One-Pass Synthesis

- Takes as input the implicant table of the logic function
- Returns a minimum area/delay PXL circuit implementation
- Main strengths
 - 1. PXL-oriented data structure for concurrent logic optimization and circuit mapping
 - Pass Diagrams (PDs), instead of BDDs, better match the final circuit implementation
 - Standard reduction rules used for BDDs still hold
 - 2. Table-based EXNOR-expansion using Local Variable Ordering
 - Global Variable Ordering drastically affects the cardinality of the data-structure

PDs & Minimization Rules

Pass Diagram PD = DAG(V, E)

- Polarized directed acyclic graphs
 - Root→source signal that evaluates the logic fucntion
 - Sink→output logic function
- Internal nodes represent EXNOR of 2 input variables
 - I-to-1 mapping between nodes and p-n junctions
 - Control variables connected to the p-n junctions' back-gates
- Edges represent circuit topology

Series/parallel connection of front-contacts

Area/Delay Estimation

- Combinational Benchmarks
- Experimental setup
- 1. PXL circuits + Pass Diagrams
- 2. Tree-of-MUXes (T-MUX) + BDDs
- 3. RG-MUX + Multi-level Synthesis

Conclusions & Final Remarks

- Graphene and 2D materials may become one of the technological vehicles for the next generation of ICs
- The lack of band-gap in graphene is a serious concern if one wants to implement digital circuits as we do with silicon
- Other strategies are possible
 - Pass-XNOR Logic is a viable solution
 - High Expressive-Power (less devices, more function)
- Possible application of PXL
 - Flexible sensors with embedded computing features for data pre-processing, e.g., sensor fusion and context recognition
 - Reduce data transmission and data transfer to CPU
 - Less memory usage
 - Improve energy efficiency

Publications

- 1. S. Miryala, A. Calimera, E. Macii, M. Poncino, L. Bolzani, "Investigating the behavior of physical defects in pn-junction based reconfigurable graphene devices," in IEEE *LATW*'13, 2013, pp. 1-6.
- 2. S. Miryala, A. Calimera, E. Macii, M. Poncino, "Delay Model for Reconfigurable Logic Gates Based on Graphene PNjunctions," in *GLSVLSI'13*, 2013, pp. 227–232.
- 3. S. Miryala, A. Calimera, E. Macii, M. Poncino, "Power modeling and characterization of graphene-based logic gates," in *PATMOS*, 2013, pp. 223–226.
- 4. S. Miryala , A. Calimera, E. Macii, M. Poncino, "Exploration of different implementation styles for graphene-based reconfigurable gates," in *ICICDT'13*, 2013, pp. 21–24.
- 5. S. Miryala, M. Montazeri, A. Calimera, E. Macii, M. Poncino, "A Verilog-A Model for Reconfigurable Logic Gates Based on Graphene pn-Junctions," in *DATE'13*, 2013, pp. 877–880.
- 6. V. Tenace, A. Calimera, E. Macii, M. Poncino, "Quantifying the figures of merit of graphene-based adiabatic Pass-XNOR Logic (PXL) circuits," in *IEEE PRIME'14*, 2014, pp. 1–4.
- 7. V. Tenace, A. Calimera, E. Macii, M. Poncino, "Pass-XNOR Logic: A new Logic Style for PN-Junction based Graphene Circuits," in *DATE'14*, 2014, pp. 1–4.
- 8. V. Tenace, A. Calimera, E. Macii, M. Poncino, "One-Pass Logic Synthesis for Graphene-Based Pass-XNOR Logic Circuits," in *DAC'15*, pp.1-4.

